Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato
نویسندگان
چکیده
Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients.
منابع مشابه
Gene expression and activity of phenyl alanine amonialyase and essential oil composition of Ocimum basilicum L. at different growth stages
Phenylalanine amonia-lyase (PAL) is one of the most important enzymes that plays a key role in regulationof phenylpropanoid production in plants. It catalyzes the first step of the phenylpropanoid pathway in whichL-phenylalanine is deaminated to trans-cinnamic acid. This step is significant for metabolic engineering andhyper-expression of the major phenylpropanoid, methyl chav...
متن کاملافزایش بیان ژن آنزیم p-کومارات 3-هیدروکسیلاز و ترکیبات فنیل پروپانوئیدی تحت تاثیر کیتوزان در کشت سلولی گل میمونی سازویی (Scrophularia striata)
Chitosan is the main compounds of fungal species cell walls and as biotic elicitors could be used to improve secondary metabolites. In this study, we have verified the time-course of cell growth, phenylpropanoid compounds ( total phenol, flavonols, flavonoids and echinacoside) production in cells treated with chitosan. To study mechanism of chitosan action, expression of p-coumarate 3-hydroxyla...
متن کاملCharacterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis
Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an up-regulation of a series of genes involved in primary metabolism and the phenylpropanoid pathway...
متن کاملMetabolic Engineering of the Phenylpropanoid Pathway Enhances the Antioxidant Capacity of Saussurea involucrata
The rare wild species of snow lotus Saussurea involucrata is a commonly used medicinal herb with great pharmacological value for human health, resulting from its uniquely high level of phenylpropanoid compound production. To gain information on the phenylpropanid biosynthetic pathway genes in this critically important medicinal plant, global transcriptome sequencing was performed. It revealed t...
متن کاملComparison of energy consumption and greenhouse gas emission footprint caused by agricultural products in greenhouses and open field in Iran
Decisions can be taken to increase energy efficiency and to mitigate the emissions to the environment by examining the energy audit and greenhouse gas (GHG) emissions footprint of crop production in different ways and in different regions, with comparable principles. In this study, energy consumption and energy indices of tomatoes production in four regions of Iran including East Azerbaijan...
متن کامل